39 research outputs found

    Nonoverlapping domain decomposition preconditioners for discontinuous Galerkin finite element methods in H2H^2-type norms

    Get PDF
    We analyse the spectral bounds of nonoverlapping domain decomposition preconditioners for hphp-version discontinuous Galerkin finite element methods in H2H^2-type norms, which arise in applications to fully nonlinear Hamilton--Jacobi--Bellman partial differential equations. We show that for a symmetric model problem, the condition number of the preconditioned system is at most of order 1+p6H3/q3h31+ p^6 H^3 /q^3 h^3, where HH and hh are respectively the coarse and fine mesh sizes, and qq and pp are respectively the coarse and fine mesh polynomial degrees. This represents the first result for this class of methods that explicitly accounts for the dependence of the condition number on qq, and its sharpness is shown numerically. The key analytical tool is an original optimal order approximation result between fine and coarse discontinuous finite element spaces.\ud \ud We then go beyond the model problem and show computationally that these methods lead to efficient and competitive solvers in practical applications to nonsymmetric, fully nonlinear Hamilton--Jacobi--Bellman equations

    Nonoverlapping domain decomposition preconditioners for discontinuous Galerkin approximations of Hamilton--Jacobi--Bellman equations

    Get PDF
    We analyse a class of nonoverlapping domain decomposition preconditioners for nonsymmetric linear systems arising from discontinuous Galerkin finite element approximation of fully nonlinear Hamilton--Jacobi--Bellman (HJB) partial differential equations. These nonsymmetric linear systems are uniformly bounded and coercive with respect to a related symmetric bilinear form, that is associated to a matrix A\mathbf{A}. In this work, we construct a nonoverlapping domain decomposition preconditioner P\mathbf{P}, that is based on A\mathbf{A}, and we then show that the effectiveness of the preconditioner for solving the} nonsymmetric problems can be studied in terms of the condition number κ(P−1A)\kappa(\mathbf{P}^{-1}\mathbf{A}). In particular, we establish the bound κ(P−1A)≲1+p6H3/q3h3\kappa(\mathbf{P}^{-1}\mathbf{A}) \lesssim 1+ p^6 H^3 /q^3 h^3, where HH and hh are respectively the coarse and fine mesh sizes, and qq and pp are respectively the coarse and fine mesh polynomial degrees. This represents the first such result for this class of methods that explicitly accounts for the dependence of the condition number on qq; our analysis is founded upon an original optimal order approximation result between fine and coarse discontinuous finite element spaces. Numerical experiments demonstrate the sharpness of this bound. Although the preconditioners are not robust with respect to the polynomial degree, our bounds quantify the effect of the coarse and fine space polynomial degrees. Furthermore, we show computationally that these methods are effective in practical applications to nonsymmetric, fully nonlinear HJB equations under hh-refinement for moderate polynomial degrees

    Discontinuous Galerkin finite element methods for time-dependent Hamilton--Jacobi--Bellman equations with Cordes coefficients

    Get PDF
    We propose and analyse a fully-discrete discontinuous Galerkin time-stepping method for parabolic Hamilton--Jacobi--Bellman equations with Cordes coefficients. The method is consistent and unconditionally stable on rather general unstructured meshes and time-partitions. Error bounds are obtained for both rough and regular solutions, and it is shown that for sufficiently smooth solutions, the method is arbitrarily high-order with optimal convergence rates with respect to the mesh size, time-interval length and temporal polynomial degree, and possibly suboptimal by an order and a half in the spatial polynomial degree. Numerical experiments on problems with strongly anisotropic diffusion coefficients and early-time singularities demonstrate the accuracy and computational efficiency of the method, with exponential convergence rates under combined hphp- and Ï„q\tau q-refinement.Comment: 40 pages, 3 figures, submitted; extended version with supporting appendi

    Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordès coefficients

    Get PDF
    We propose an hp-version discontinuous Galerkin finite element method for fully nonlinear second-order elliptic Hamilton-Jacobi-Bellman equations with Cord�ès coefficients. The method is proven to be consistent and stable, with convergence rates that are optimal with respect to mesh size, and suboptimal in the polynomial degree by only half an order. Numerical experiments on problems with strongly anisotropic diffusion coefficients illustrate the accuracy and computational efficiency of the scheme. An existence and uniqueness result for strong solutions of the fully nonlinear problem, and a semismoothness result for the nonlinear operator are also provided

    Finite Element Methods with Artificial Diffusion for Hamilton-Jacobi-Bellman Equations

    Full text link
    In this short note we investigate the numerical performance of the method of artificial diffusion for second-order fully nonlinear Hamilton-Jacobi-Bellman equations. The method was proposed in (M. Jensen and I. Smears, arxiv:1111.5423); where a framework of finite element methods for Hamilton-Jacobi-Bellman equations was studied theoretically. The numerical examples in this note study how the artificial diffusion is activated in regions of degeneracy, the effect of a locally selected diffusion parameter on the observed numerical dissipation and the solution of second-order fully nonlinear equations on irregular geometries.Comment: Enumath 2011, version 2 contains in addition convergence rate

    Discontinuous Galerkin finite element approximation of non-divergence form elliptic equations with Cordes coefficients

    Get PDF
    Non-divergence form elliptic equations with discontinuous coefficients do not generally posses a weak formulation, thus presenting an obstacle to their numerical solution by classical finite element methods. We propose a new hphp-version discontinuous Galerkin finite element method for a class of these problems that satisfy the Cordes condition. It is shown that the method exhibits a convergence rate that is optimal with respect to the mesh size hh and suboptimal with respect to the polynomial degree pp by only half an order. Numerical experiments demonstrate the accuracy of the method and illustrate the potential of exponential convergence under hphp-refinement for problems with discontinuous coefficients and nonsmooth solutions

    On the Convergence of Finite Element Methods for Hamilton-Jacobi-Bellman Equations

    Get PDF
    In this note we study the convergence of monotone P1 finite element methods on unstructured meshes for fully non-linear Hamilton-Jacobi-Bellman equations arising from stochastic optimal control problems with possibly degenerate, isotropic diffusions. Using elliptic projection operators we treat discretisations which violate the consistency conditions of the framework by Barles and Souganidis. We obtain strong uniform convergence of the numerical solutions and, under non-degeneracy assumptions, strong L2 convergence of the gradients.Comment: Keywords: Bellman equations, finite element methods, viscosity solutions, fully nonlinear operators; 18 pages, 1 figur

    Time-parallel iterative solvers for parabolic evolution equations

    Get PDF
    We present original time-parallel algorithms for the solution of the implicit Euler discretization of general linear parabolic evolution equations with time-dependent self-adjoint spatial operators. Motivated by the inf-sup theory of parabolic problems, we show that the standard nonsymmetric time-global system can be equivalently reformulated as an original symmetric saddle-point system that remains inf-sup stable with respect to the same natural parabolic norms. We then propose and analyse an efficient and readily implementable parallel-in-time preconditioner to be used with an inexact Uzawa method. The proposed preconditioner is non-intrusive and easy to implement in practice, and also features the key theoretical advantages of robust spectral bounds, leading to convergence rates that are independent of the number of time-steps, final time, or spatial mesh sizes, and also a theoretical parallel complexity that grows only logarithmically with respect to the number of time-steps. Numerical experiments with large-scale parallel computations show the effectiveness of the method, along with its good weak and strong scaling properties

    Robust and efficient preconditioners for the discontinuous Galerkin time-stepping method

    Get PDF
    The discontinuous Galerkin time-stepping method has many advantageous properties for solving parabolic equations. However, its practical use has been limited by the large and challenging nonsymmetric systems to be solved at each time-step. This work develops a fully robust and efficient preconditioning strategy for solving these systems. We first construct a left preconditioner, based on inf-sup theory, that transforms the linear system to a symmetric positive definite problem that can be solved by the preconditioned conjugate gradient (PCG) algorithm. We then prove that the transformed system can be further preconditioned by an ideal block diagonal preconditioner, leading to a condition number κ bounded by 4 for any time-step size, any approximation order and any positive self-adjoint spatial operators. Numerical experiments demonstrate the low condition numbers and fast convergence of the algorithm for both ideal and approximate preconditioners, and show the feasibility of the high-order solution of large problems
    corecore